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Abstract

We describe a software system, TOPO, that numerically analyzes and graphically displays topo-

logical aspects of a three dimensional vector field v to produce a single, relatively simple picture

that characterizes v. The topology of v that we consider consists of its critical points (where

v = 0), their invariant manifolds, and the integral curves connecting these invariant manifolds.

Many of the interesting features of v are associated with its critical points. The field in the neigh-

borhood of each critical point is approximated by the Taylor expansion. The coefficients of the

first non-zero term of the Taylor expansion around a critical point are the 3x3 matrix Vv. Critical

points are classified by examining Vv's eigenvalues. The eigenvectors of Vv span the invariant

manifolds of the linearized field around a critical point. Curves integrated from initial points on

the eigenvectors a small distance from a critical point connect with other critical points (or the

boundary) to complete the topology. In addition, one class of critical surfaces important in com-

putational fluid dynamics is analyzed.

TOPO is implemented as a module in the FAST [1] visualization environment. It operates on cur-

vilinear, structured grids, including large multi-zone grids. We have used TOPO to visualize a

number of CFD data sets. The results agree well with other topology software and hand generated

topologies. TOPO has proved useful in finding surface topology, flow attachment and separation

points, vortex cores, scalar field local extrema, and generally interesting regions of v. We believe

there may be other interesting applications yet to be discovered. This paper contains most of the

information needed for a good programmer to code a topology module in another environment.

Introduction

Large, complex vector fields are difficult to visualize. One simple technique chooses a set of

points in the field and draws arrows indicating the magnitude and direction of v at each point. Un-

fortunately, this usually results in a display that is either terribly cluttered or limited to a small

subset of the data. If the points are chosen from some simple shape like a plane, the ends of the

vectors can be connected to form a deformation surface -- but again only a subset of data is visu-

alized. One can calculate the vector magnitude and use scalar visualization techniques but direc-

tional information is lost. Interactive control of initial positions for integral curves (a.k.a. "particle

traces") [2] and surfaces [3] may be used to explore v, but choosing appropriate initial positions is

hardly straightforward.

A simple picture completely characterizing v is the ideal. Studying such a picture should give one

a clear and complete understanding of the important characteristics of v. Vector field topology vi-

sualization has the potential to go a long way in this direction; our software takes one small step.

Informally, vector field topology consists of the key points, curves and surfaces that, taken togeth-

er, characterize all integral manifolds in v. Integral manifolds include particle traces, streamlines,



Thei,j,k indexesinto thisarrayareequivalentto integerpart of the (_ rl, _) co-ordinates. We

use computation space for calculations since they simplify many operations; e.g., differencing.

v = (u, v, w) is defined as:

dx

u(x,y,z) =

or

vCx,y,z) = _--
dt

dz
w (x, y, z) = -_

dx i

vi = d--t

(2)

Where, in this case, (x,y,z) are the lagrangian coordinates of an element"moving" with the vector

field and t is time in velocity fields and an arbitrary parameter in others.v (x, y, z) may be con-

verted to computation space v' (_, r I, _) using the chain rule:

u, (_, ;) _d_
dt

a_d_ a_dy a_dz
- _ +a--_tt+ a--zd--t

v,(_ _, D an _ax _ay _ _dz
- dt - _-x-dt + _-y-dt Oz dt (3)

w,(_ _, _) - d;
dt"

a;d_ a;dy a;dz
- _ + _t + 3_i

or,

V t = ,JV

Where ,I is the Jacobian matrix of the coordinate transformation. J and J-_ are used to convert

from physical space to computation space and back.

Critical points exist where the components of v all simultaneously vanish. They are identically lo-

cated in both physical and computation space since zero length vectors remain invariant under

nonsingular local linear transformations such as ,I and ,1-1.

The Matrix Vv

The Taylor series expansion of v about a point x (°) is:

_'i -t- (4)



The following diagrams of critical point types are after Abrahams [11].
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Figure 1: Classification of two dimensional critical points.
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Figure3: Critical point glyphs.

tionof v alonganintegralcurvemaybeplacedon thecurvewith usercontrolledsizeandsepara-
tion.Thesearrowheadsmaybeanimatedto appearto flow along the curves.

Implementation

TOPO is implemented as a module in the FAST CFD visualization environment (2). The soft-

ware:

1. Transforms v to computation space.

2. Locates candidate grid cells that may contain critical points.

3. Locates critical points within these candidate cells.

4. Classifies each critical point using the eigenvalues of Vv.

5. Integrates curves along the eigendirections of Vv.

6. Displays critical points and integral curves combined with other FAST generated vi-

sual elements

Most parameters of topology generation are under user control. We have chosen defaults for these

parameters that work well with the CFD data sets we have examined. These defaults are found in

the Appendix B.

Transformation of v to Computational Space

The vector field is converted to computation space. This transformation is accomplished by differ-

encing x with respect to _ to generate j-1 at each grid node, inverting j-l, and transforming v us-

ing the resulting matrix. All of the following calculations are accomplished in computation space.

Note that data points are only known at grid points so the value of v at other locations must be cal-

culated using trilinear interpolation.

Finding Candidate Grid Cells

A critical point can only occur in a cell where the values of all three components of v pass through

zero. For monotonic interpolation schemes (e.g. trilinear interpolation), this may be determined

by a simple heuristic. For each component we examine the value at each cell vertex. If both nega-

tive and positive values exist, that component must change sign (and hence pass through zero)

somewhere within the cell. This is a necessary, but not sufficient condition for a critical point to

exist within the cell. It is not sufficient because the surfaces within a cell where the component-

wise zero crossings exist might not intersect. See Figure 4.
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Numerical Methods

Care must be taken when evaluating the eigensystems of matrices that are defective or nearly so

[28]. Numerical ambiguities that arise when at or near a multiple root are handled in an ad-hoc

manner that, however, seems to help. Results of subtraction are set to zero if the absolute value of

the result is less than a small fraction of the absolute value of any operand.

In most places where the software tests a value for zero, there is a relative fuzz factor. Values with
an absolute value less than the relative fuzz factor are assumed to equal zero. User controlled fuzz

factors may be found in Appendix B.

Integration is performed in computation space using fourth order Runga-Kutta with adaptive step

size error control [29]. We have found this to be necessary since the magnitude and direction of

the vector field can vary dramatically near critical points. Integration is started with a user param-

eterized step size. The maximum number of steps, maximum stepsize, minimum and maximum

step length, and the adaptation criteria in each dimension further parameterize the integration.

Differencing is accomplished using a three point stencil where possible. Where one of the values

is unavailable due grid boundaries or iblanked grid points, a two point one sided difference is

used.

Cell bisection is accomplished by interpolating the values at the midpoint of each cell edge, face,

and at the cell center, forming eight sub-cells. This procedure is performed recursively.

Special Cases

Degenerate Critical Points

The discussion thus far has focused on "generic" or "hyperbolic" critical points. Exceptional cas-

es can arise in several situations. Non-hyperbolic critical points occur when the real part of any ei-

genvalue is equal to zero. Other exceptional cases occur when defective matrices are encountered

and hence eigenvectors coincide. These degenerate cases, though unstable, do occur in flows with

imposed constraints such as symmetry or incompressibility. Currently, all degenerate critical

points are placed in a single class by TOPO and no further analysis is attempted.

Critical Curves, Surfaces and Volumes

With the notable exception of no-slip boundaries in CFD velocity fields, TOPO makes only a min-

imal effort to detect, analyze, and display curves, surfaces or volumes where v vanishes. No at-

tempt is made to find critical curves or surfaces unless they fall on grid cell boundaries. If two

adjacent grid points have zero length vectors, we assume a critical line between them. For the

most part, TOPO simply draws a line between such points. Critical surfaces on cell boundaries

can be detected by examining these lines. Critical volumes can be similarly found. The cells con-

raining such critical lines are not considered candidates and are not searched for critical points.

If a critical curve or surface exists within a grid cell, then multiple critical points may be found.

TOPO limits the total number of critical points found in a single grid cell to about eight. A warn-

ing message is printed if this limit is exceeded.

No-slip Boundaries

In many CFD computations, no-slip boundary conditions are imposed on the velocity field. On

11



Figure 9a: Y'mg's hemisphere cylinder hand drawn surface flow topology.

Figure 9b: Helman's hemisphere cylinder surface flow topology.

, " .. , .....

::_:_i::iii::i::i::iiii!ili$!_ i!iiiiiii?:!!_ii_ii.).'iiiiiiiiiiiiiiii_!_!_i?_ii!iiiiiiiiiiii_iii_

Figure 9c: TOPO's hemisphere cylinder surface flow topology.

Surface Flow Topology

By integrating curves in the two dimensional skin friction field along the eigendirections of sad-

dies, one may visualize surface flow topology [12,21]. These curves connect skin friction field

critical points and allow the user to deduce the rest of the surface skin friction field's dynamics

qualitatively, since integral curves may not intersect, except at critical points. Furthermore, by ex-
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Figure 10b: "Vortex Cores:" integration along only real eigen-

vector of spiral-saddle critical points.

Summary

Vector fields may be visualized using the new TOPO module in FAST. A single, relatively simple

picture captures many key features of v. The authors have used this software to visualize CFD so-

lutions. To our knowledge, the software is unique in displaying off surface eigenvectors of skin

15



where both (1) and (2) have been used.

_Vtl

Suppose that _,_--_mCanbe diagonalized. There exists a matrix M such that

Ov' l

Mil_m (M-'l) mj = Dij

where D is diagonal. From (4) we have

_l _Vp _X,q

Mil_xp_Xq_ m (M"-I) raj = Dij

or
_vp (A_I) qJ = Dij

A ip _ x----_q

(5)

where
A ip = M i l-_pp

(6)

We conclude that

_V i _Vli

(Vv)ij = _ and (V'v')ij =

have the same eigenvalues and that their eigenvectors are related as in (1).

Appendix B

This appendix contains the user controllable parameters of the algorithms used by TOPO.

Critical Point Search

Number of Bisections 5

Newton Parameters:

Convergence criteria (epsilon)

Minimum convergence criteria allowed

Outer limit

Fuzz factor for inside-cell-check

Maximum number of iterations

Curve Integration Parameters

Number of bisections 8

0.000001

0.00001

1,000,000

0.000001

8
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Plate 1: Hemisphere cylinder surface flow topology.



Find interesting Portions of a Field

Data: Ying, et. al. AIAA 86-Z179

Software: FAST
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Plate 2: A particle trace (black) through an interesting portion
of a hemisphere cylinder velocity field near multiple off sur-

face critical points. Note surface flow topology in red and

cyan.
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